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1, BACKGROUND

Heat has presented hazards for explosives and propellants since they have
been known and used. In combat, smmurition is considered particularly vulner-
able and consequently, measures are taken to protect it from incendiaries, fuel
fires, and other threats. In noncombat situations, many accidental ignitions
occur through excessive heating of energetic materials in their manufacture,
transport, or storage.

Many catastrophic events have inflicted terrible damage, such as the ex-
plosion of 7 million pounds of fertilizer grade ammonium nitrate at Texas City,
TY with resultant fatalities of over 560. In this event, two separate
thiploads exploded in the harbor after selfheating to the ignition temperature.
Another event began with a relatively minor fire on an ammunition train, spread
to ordnance items, and resulted in a major disas*er at Rossville, CA. The need
to prevent such disasters has led to numerous programs aimed at reducing the
thermal vulnerability of en'rgetic materials.

Common explosives used by the military are 2,4,6-trinitrotoluene (TNT),
hexahydro-1,3,5-trinitro=1,3,5-triazine (RDX), octahydro=-1,3,5,7-tetranitro-
1,3,5,7-tetrazocine (HMX), and combinations with inert binders. It would be
beneficial to stabilize these materials to prevent thermal initiation of
catastrophic decomposition and yet allow them to initiate and perform usefully
vhen exposed to the fully developed detonation wave from a bcoster explosive.

2, THERMAL FFFECTS

It is well known that heat accelerates chemical reactions. Explosives are
particularly susceptible to thermally induced decomposition reactions. Many
investigators have studied thermal effects on explosives. They have used many
different criteria for predicting and measuring stability.

R. N. Rogers determined the critical temperatures of six pure explosives

- . 1 . s
by applying the Frank-Kamentskii equation to them. He defines the critical
temperature, Tc’ as the lowest constant surface temperature at which a specific

material of a specific size and shape will self-heat catastrophically.
1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) had the highest T . For a one

_ . \ o
meter diameter sphere it is about 200°C. For comparison, RDX is about 111°C.

A smaller RDX sphere, 10 cm diameter, is ca. 150°¢, Autocatalysis may cause
energetic materials to decompose more rapidly thar predicted and/or chaage the
composition of the sample during a test due to accumulation of reaction
products.

Wise2 3 found that the binder in nitramine composite propellants exerts a
strong effect on their sensitivity to hot fragments. Initiation was considered
to result frou conductive ignition. Nitramine-based propellants had
significantly higher ignition temperatures than a nitrocellulose-based
propellant. The better conductive ignition resistance of some compositions was
attributed to lower temperature endothermic decomposition reactions of the
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binders. Cosgrove and Owen showed the effects of RDX decomposition products
on its decompositon. Nitric oxide retarded the rate of RDX decomposition, but
enhanced ic over that of an inert gas.

From these references and information from a roviaws important factors
affecting thermally induced catastrophic decomposition are: (1) size and shapa
of the heated material, (2) thermo- chemistry of binder dacomposition, (3)
chemical effects of nitramine-binder decomposition products, and (4) pressure
or degree of confinement., In our program, each of these factors was coneidered
in the selection of additives for particular explosive-binder combinations.

3. APPROACH .

It should be poesible to inhibit or prevent the operation of a catas-
trophic sequence of thermal reactions in explosives which occur as a result of
undesirable thermal sources such as a cook-off , and yet allow the same
material to contribute to detonation whén the explosive is subjected to a fully
developed detonation wave from a booster.

Three routes to prevent runaway decomposition reactions are obvious: (1)
develop explosives that resist decomposition, (2) use binders that resist
thermal decomposition, and (3) incorporate additives that inhibit or prevent
the decomposition reactions. The development of TATB is an example of route
(1). However, TATB does have drawbacks such as high cost and relative
difficulty of initiation. This task uses routes (2) and (3) to develop new
explosive compositions from common explosives with attendant cost and
sensitivity similarities but with greatly improved fire resistance.

Thermally stable or stabilized binders were sought with good physical and

6
. processibility properties. A review of thermally stable elastomers suggests

fluorocarbon elastomers, polyorganophosphazenes, organic heterccyclic
elastomers, and silicone elastomers as well as others. However, the presence
of large amounts of nitramines in compositions with these polymers severely
taxes the ability of the composition to resist ignition. The nitramines also
function a. oxidizers and contribute to the decomposition of the binder.

Flame retardants are rommonly used to prevent the burning of polymers so
it is reasonable to use them to increase the fire resistance of explosives
also. Usually, fire retardants in solids operate in one or more of the
following ways; (1) altering the thermal degradation processes in the solid
phase, (2) forming a surface barrier to heat, oxidizer, or fuel, (3) inter-
fering with gaseous oxidation in the vapor space, or (4) absorbing heat through
endothermic processes thich reduce the amount of heat available for degradation
reactions. )

Typical actions of flame retardants are, for example, those of phos-
phorous and halngenated compounds. Phosphorous compounds generate phosphor-
ous acids which can degrade many organic comwpounds and furnish a syrupy coating
on them. These sctions tend to create much char and anly low amounts cf
flammable volatiles. Halogenated compounds are considered to act as fire
retardants by trapping the free radicals necessary for oxidation reactions in
the vapor phase. Antimony compounds act similarly.,
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The mode of decomposition of RDX itself is not well understood, but flame
retardants msy be #ble to interrupt the catastrophic sequence of thermally
initiated recactions leading to a detonation. The explosivas may still
decompose, but in a much less haszardous mode. Ianterruption of some of the
initial free radical reactions may dbe sufficient to accomplish this.

Exploeiva compositions were tested by DSC, Flame Test, Hot Wire Test,
Cook Off Test, ®late Dent Test, Drop Weight Iapact as well as cowpatibility
tests. Equipnment and test location were not aveiladble for the Taliani or VIS
teats. The latter tests were not considered critical to this program since
they are designed for long term storage stability rather than the cook off or
incendiary threat. They would eventuially have to be completed to qualify
candidates for Interim Qualiification.

4, CALCULATIONS

7
Preliminary calculations were done using the Xamlet Short Met:od as
adapted by R, McGuire8 for a programmable hand calculator. They were dore on &
TI Model 59 hand calculator. In this method, the detoration velocitices and

detonation peak pressure of CHNO explosives are calculated from the cxplaaivefa‘

elemental composition, heat of formation, and initial demsity in an empirical
correlation. The results agree well with predictions from the RUEY and STRETCH
BKW computer codes as well ss with experimental measurements.

For example, RDX was run using a heat of formation nf +14.7] kcal/mol and
a density of 1,806 g/cc. The calculated results were ch = 345 kbars and D =
8.8] km/s. These compare well with ch = 338 kbars and D = 8,70 km/s

9

experimental.

To simulate explosive compositions with low densities, calculatiuns were
made using the plastic bonded explosive( PBX), LX-l4, with a composition of
95.5% HMX and 4.5% Estane 5702 and the density varied frum 1.83 to 0.472 g/ce.,
The results are shown in Table 1.

TABLE 1. Detonation Properties for LX-14

s

DENSITY, g/cc ch’ kbars D, km/s

Literature? 370 8.83
1.83 340,42 8.72
0.920 86.04 5.57
0.472 . 22.65 4.16

a Ref, 9

Both the detonation pressure and velocit: are seen to drop off with
increasing porosity. Small amounts of porosity may, however, improve
performance through sensitization. This wculd be a separate consideration not
studied here.

Similar calculations were also made fuor a composition with RDX and a
relatively large amount of Estane 5702 to represant a polyurethane foam




binder. 1t is well charuc:ori:cd9 with an empirical formula of

C(5.13)H(7.50)8(0,19)0(1,76); heat of formation of =95 kcal/mol (=950 cal/g);

and density of 1.18 g/cc. A mixture of 71.4X RDX and 28.6% Estane 5702 and a

density of 0.657 g/cc gave a heat of foruation of -22.% kcal/mole, detonation
‘ prescure of 34,96 kbars and 4.27 km/s. It is not surprising that the results
{ are significantly lower than those given above for neat RDX since this sample
\ has only 26X of the RDX on a density basis. The remainder of the volume is
taken up by binder and porosity. The detonation pressure was 10X of the neat
RDX value and the detonation velocity is 49X of the neat RDX value.

5. EXPERIMENTAL

It -as considered necessary that the binder materials be somevhat tough
sand elastomeric., It would be beneficial if the materials had some resistance
to burnirg in air. The compositions made with the binders should be
potentially processable in planetary mixers or melt-cast kettles. Small scale
mixes were made in approximately 8 gram batches by hand after compatibility
terts were conplated, Combinations of these binders were also used.

TABLE 2. Binders

MATERIAL COMMERCIAL NAME SUPPLIER
l l. Polyurethane Foam AV 255 Avanti International, Houston, TX
2, " " XWE 104 " " " "
3. " " XWE 106 " " " "
4, Acrylic Latex Hycar 2671 B. F. Goodrich, Cleveland, O
5. Phosphate Ester- Geon 650X17 nowe o " "
Vinyl Chloride Latex
6. " " " Geon 590X4 won o " "
7. Cellulose Acetate Buty. Tenite 264 Eastman Cul Prod., Kingsport, TN
' 8. " n " MIL-P-149 IMPTC, APG, MD
9. Vinyl Ester Derakane 411-45 Dow Cml, Midland, MI
10." " " Derakane S10N " " " "
11." " Derakane 8084 " " " "
12.Thermoplastic Block
Co-polymer - Kraton G1650 Shell Cml Co., Housaton, TX
13, " . Kraton Gl652 " " " " "
14.Fluorinated Elastomer Kel 7 3700 3¥, St. Paul, MN
15.Fire Retardant Coating Scotcuncast 2130 " " » "
16.Plaster of Paris Bondex Int'l, Toms River, NJ
17.Polyurethane Elastomer R-45/IPDI Arco Cml. Co.,/Thorson Chem. Co.
' 18. " " Polyol/N-100 Dow Cml. Co./Mobay Chem. Corp.
; 19.Polybutene Indopol H30C Amoco Cmli.Corp., Chicago, IL.
4
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Many other potential binder materials were also investigated, but
problems with compatibility, processibility, or product physical properties
eliminated them. Some of the materials considered were (1) numerous epoxies,
(2) fluoroelistomers, (3) fluorotelomer dispersions, (4) epichlorohydrin
homopolyrers, (5) reactive butadiene/acrylonitrile copolymers, (6) polyacrylate
elastomers, (7) ethylene~vinylacetate copolymers, (8) polyether based
polyurethane, (9) polyester :hernoclagtic elastoners, and (10) cellulose
acetate.

Numerous waxes were also incorporsted into compositions to determine
| processibility and product physical propertiss. Some will be described in
;= following reports.

Plasticizers were used to fluidize some of the above binders at elevatad
temperatures. They are shown in Table 3.

TABLE 3. Plasticizers

; MATERIAL COMMERCIAL NAME SUPPLIER
i Acetyltriethyl Citrate Citroflex A-2 Morflex Cul. Co., Greensboro, NC
| ' Glycerine ~
Paraffinic Light 0il Arcoprime 200 ARCO Petroieum Prods. Co., P?ilh PA
1] ]

L Paraffiaic Mineral 0il Tufflo 6016 " " "

f Flame retardants and inhibitcrs have been used for virtuvally all

‘ combustible materials to reduce incidences of fire and thermal damage.

; However, the situation addressed in this report is somewhat unique in that the
E explosive contains its own oxidizer in most cases. Thus, the energetic

} components of the explosive compositions decompose at relatively moderate

| temperatures and contribute to oxidation of the binder components. To retard
these reactions, a flame retardant would have to act in the solid phase. It
would also have to be essentially non-reactive with the explosive over the
service temperature range.

« . 10 .
As a beginning, Lyons records the average requirements for
fire-retardant elements to render common polymers self-extinguishing. These
are shown in Table 4,
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TABLE 4, Average Requirements for Fire-Retardant Elements to Render
Common Polymers Sclf-txt:nguiohinclo

POLYMER %P $C1 $Br P+4C1  %P+4Br SSb,.o6 + %C1  $3b 0¢ ¢+ $Br

Cellulose 2.5-3.%5 >2u 145 12-15+9-12

Polyolefins $ W 20 2.549 0.5+7 5+8 3+6
PVC 2.4 Lo NA S-lSSSbhos
Acrylates 5 20 116 2¢4 1+3 T+5
Polyacrylo-

nitrile 5 10-15 10-12 1-2+10-12 1-2+5-10 2+8 2+6
Styrene 10-15 U4=5  0.5¢5 0,2+3 7+7-8 T+7-8
Aérylonitrile-

butadiena-

styrene 23 3 5+7 ‘
Urethane 1,5 18-20 1214 1410215 O0,5+4=7 L+d 2.5+2.5
Polyester S 25 12-15 1+15-20 2+6 2+16-18 2+8-9
Nylon 3.5  3.5-7 10+6
Epcxies 5-6 26-30 13-15 246 2+5 3+5
Phenclics 6 1€

Specific commarcial materials useld in these tests are listed in Table 5.

NOJxZ: Combinsticns cf fire-retardant elements are shcwn as ranges in some
case, e,f., the ancants c¢f Sbhos «nd Cl in nitrocellulcse are 12-15% of Sbhos

with 9-12% of Cl. The percentages are all weight percents.

It can be seen frcom this table that the required amounts of retardants to
render the polymers self-extinguishing may vary widely for each material, For
example, poclyurethane only needs 1.5% of phosphorous, but 18-20% of chlorine is
needed for the same effect, Synergistic effects a.e alsoc shown.




TABLE 5. Flame Retardants And lnhibitors

ﬂ MATERIAL COMMERCIAL NAXE SUPPLIER
t 2inc Borate Firebrake 2B U.S. Bovax, Montvale, NJ
| Hexabromobiphenyl Firemaster BP-~6 Michigan Chewical, Chicago, IL
! Nelytdenum Flame
| Sappressant Kemgard 425 Sherwin Williams Co, Cleveland, OH
‘[ " " 911A "® " " " "
1 1] n 981 »" " " " "
' Triaryl Phosphate
Ester Kronitex 350 FMC Corp., King of Pruseia, PA
Calcium Formate Calcium Formate Int'l Minerals & Chemicals

i Mundelein, IL

Antimony Oxide Antimony Oxide
Ammonium Phosphate Ammonium Phosphate J. T. Bsker, Phillipsburg, N
Aluminum Oxide Hydrate ATH Solem Industries, Norcross, GA
Organo Phosphorous Diol C-206 FMC Corp., Philadelphia, PA
Halogenated cyclohexane FR=-651-P Dow Chemical, Midland, MI.

‘ Brominated polvol XFS 43357.00 voon " "

6. THERMAL TEST RESULTS

Numerous compositions were made with RDX, HMX, TATB, binders,
plasticizers, and additives. The compositions were tested for resistance to
| thermal danage and for explosive performance.

6.1 Hot Wire Tests. The Hot Wire Test was developed to simulate hot particle
heating of the explosive compositions.The apparatus is shown in Figure 1.
Samples were 1 cm cubes, or slightly smaller, and weighed ca. 1 gm. Bomb
calorimeter fuse wire, 0.152 ms diam., was inserted into the sample by means of
an incision. The wire was electrically heated by means of a set voltage to
bright orange color. The time elapzed until appearance of a flame or the wire
breaks was recorded. Representative results of hot wire tests are shown in
Table 6,
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TABLE 6, Hot Wire Test Results

3 Additive T
| Binder Material RDX Type 2 sec Comments
i 1, Polyurethane Foam 71 none na 2,2 Burn to Black Ash
| 2, " " 50 Kemgard 425 10 4.0 " v "
3. " " 50 " 911A 10 3.1 " von "
4, " " 50 " 981 10 3.7 " "o "
‘ 5. " " 50 Kronitex 50 10 14,6 " " Brown Oily R.
| 6. " 3 so " 10 13.0 " " Black Ash
7. " " 50 " 20 >60 No flame ’
8. " " 50 Calcium Formate 10 3,2 Burn to Black Ash E
9, " " 50 Antimony Oxide 10 4.9 " "o o |
10, " " 50 Firemaster 16 3.8 " "o A ' . 1
11, CAB MIL SPEC 85 Firebrake ZB 9 6,3 " o v | |
. 12 CAB Tenite 70 14,3 Wire Breaks
13. CAB MIL SPEC 56 Firebrake 2B 20 230 Smoking Decomp.
14, Polyurethane Foam 45 Antimony Oxide +
Firemaster 18 7.2 Breaks Wire
15, Geon 650x17 71 None >30 Smokes to Black Ash
1¢, Polyurethane Foam 62 Geon 650x17 31 13.4 Burns " " "
17, " " 71 " 650x17 21 10.5 Breaks Wire !
18, " " 71 " 590x4 2] 18,3 " "
13. PU Foam XWE1O4 57 None 10.3 Burns to Black Tar
20, " " " 67 " 8.5 " "o "
21, " " XWE106 57 " 2,4 " "oy Agh
22, » " " 67 2.7 " won "
23, Scotchcast 2130 50 " 7.9 " P "
24, Polyurethane Foam 50 FMC C-206 10 13.0 v wou "
25, Plaster of Paris 41 Hycar 2671 18 25.0 ¢ " Brown "
26, " v 60 " " 14 8,3 v "o "
27. Hycar 2671 81 None 10.6 Wire Breaks
28. Kraton G1650 85 Firebrake ZB 9 24.3 Green Flame ‘
29, " 61652 63 " 14  38.0 Burns or Decomposes
30. Derakane 510N 80 None 16.4 Wire Breaks
31, Xraton 1652 59 Ammonium Phos. 16 >160 Smokes & Decomposes



TABLE 6. Hot Wire Test Results (Continued)

, R % Additive T | 'W
Binder Material RDX Type % sec Comments
.32, KF 3700 ‘ 67 "None =~ . 6.5 Wire Breaks
7.7 33, Polyurethane Foam 80 Hycar 2671 . 1k 6,5  Burns to Black Ash
B ~.aJU3PonPU”(EhQ00) . HMXT5  Nore . ' 8.3 Flame
Coolloroasy o (EWS0D) L EMXT3 Y 9.8  Flame |
A 36 0 (ERS00) T HMXES K50 - 10 33.Y  Melts & buras to tar
o : ¢x31. PU'(EQSOO) ' RDX65 Ammon. PhosphatelO  Th.k Smoke then flame
\ 1 ‘m qﬁ_L§5§ DerakanelBION' TATBT3  None >600 Sl1. charring
| | 39. " 808k  HMXT3 " 7.6 Burns . to black ‘ash
Lo, " RDX73 " ' 5.8 " "o on - "
§1, ™ " TATB73 " >480 S1. charring .
L2, Xraten & Arcc RDX65  Ammon. Phosphatel0 >L0O No flame .
L3, PB & oile’ ~RDX77  Amm,Phes,- K50 15 150 Smoke to black ash
L‘h . 1" " RDX52 " " 10 150 " " " n
ks, Paraffin wax RDXY1  None 150 Some smoke, no ash
Lé, Pcyurethsns foerm RDX50 FR651P (Dow) 10 25 Some burn, some smoke
47, " " " XFs 43357,00 10 11 Burn
L8, Pz & FE wax RDXGU K50 6 80 "

6.2 Molten Explosive Ignition. Several basic explosives were also heated
in the hct wire test, but they melted and flowed away from the wire without
effect. The test was modified somewhat to study their ignition. A small
groove was sawed in the rim of a small ceramic cup (4.2 tm ID, 5.0 mm IH) used
for Differential lThermsl Analysis, A loop of the fuse wire was cciled once and
lowered into the cup by way of the groove. TNT was tried first. It melted
easily and formed a pool in the bottom of the cup. The coil of wire dipped
into the liquid. Heavy dblack smoke was given off pricr to ignition which
occured after approximstely 2 minutes, It was not determined whether the
ignitions occurred in the vapor or liquid phases.

Since most of the explosive compositions tested in this report contained

RDX, a compressed sample (30 mg) of neat, Class 1, Grade B RDX was also tested i
with the hot wire in the ceramic cup. It did not ignite after heating for i
periods of up t0 3 minutes, It melted to give a clear, pale yellow liquid. !
During the heating there were occasional bubbles and light smoking. The test |
wvas repeated several times with the same results. The temperature of the

molten RDX was followed by a thermocouple inserted in the cup, but a somewhat

high temperature was recorded which may have been due to the close proximity of

10
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the resistance wire heat source., Another experiment was done to more accurately
measure the temperature., In this a 50 mg sample of RDX was heated in a small
cavity drilled in a 1" thick tlock of steel laid or top of a hot plate. A
nearby small cavity in the block held an iron-constantun thermoccuple. After 16
minutes’ heating on high heat; the RDX started melting with the block temperature
being 204 ¢ (corrected), This corresponds with literature values. After 18
minutes the block temperature hud risen to 213 C and the molten RDX was bubbling
and yellowing. After 19 minutes the temperature wos 218 C and the RDX began to -
violently bubble and smoke. A metal spatulu was immersed in the effluent smoke,
but no decomposition products or sublimed material condensed. After 2% minutes
the temperature was 2L4 C and ell of the RDX was gore,

Another interesting explosive, Detasheet, PETN in a flexible binder and
. sold by DuPont, was also heated in the above described ceramic cup. In four

tests with O, 095 g each, the material quickly melted and boiled until ignition
at 41 secords.

6.3 LSC and Fiamé Tests. A very simple test, the Flame Test, consisted of
briaging a match fliame directly under a small sample of the material. It is a
severe test, but seems to give a clear go-no-go distinction. No explaosives
passed the test entirely satisfactory. The results of Flame Tests and DSC
rneasurements on the same compositions are shown in Table T.

11
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SETR
SR
L

|

P ¢
o 16.
1%.
18.
19.
20.
21,
22.

23.
24,

25.

26,

27,
28,
29,
30.
31,
32,

" TABLE 7. DSC AND FLAME TEST RESULTS

5 © Binder Material
- 'l Polyurethane. Foam

" B
" : LU
w oo
‘v R [ B
Y om
: ‘ o
R L B U
™ : "
w o n
Y S wm

CAB MIL SPEC
Tenite
" MIL SPEC

Polyurethane Foam

Geon 650x17

Pdlyurethane Foan

7t "

" n
PU Foam XWZ104
n " " ’
v XWE106

L1] n v

Scotchcast 2130

Polyurethane Foan

Plaster of Paris

‘Bycar 2671

Rraton G1650
" G1652
Derakane 510N
Kraton 1652
KF 3700

X

~RDX

n

50 -

56

50"
50,
50

55
59

50
.50

85

70
56
45

71

62
7
71
57
67
57
67
50

50

41
60
81
€5
63
80
59
67

~ Additive
3‘Type : 21;
mone .. |
Kimghr# 425
ANERE 207y
.. 981 |
[1] 50
ow '

v V-
"

Caolcium Formate

Antimdﬁy Oxide

fFirehasteg

‘Firebrake 2B

Firebtaﬁé_zsx'
Aatimony bxidé +
Fiiemastér ' |
None

Geon 650x.7

" 650x17

" 590x4

None

"
11
"

FMC C=-206
Hycar 2671

11} 11]

None
Firebrake ZB

[1]

None

Ammoniux Phos.

None

12

e

. na
 :1°
119

10
10

10
20
10

10

10

9

20

18

31

21
21

10
18
14

14

)

DSC
Onset, C
194

j192'
192
-197

189
187
193 .
190
198

197

206

198

204
204
204
193
193

194
179
206
206
205
204
204
205
197
205

DSC . Flame
Peak,C Test
229 B
230 B
228 B
225 B
219 B¥*
228 -
229 B*
227 B
231 B
- B
- B
247 B
242 B
230 -
232 B
227 B
236 B
228 B
228 B
230 B
222
237 B*
242 B*
238 B
239 B
245 -
248 B
244 B
240 B




33, Polyurethane Foam 80 Hycar 2671 1k 205 235 -

34, PJ (ELDO0O) HMXT5 None B
35. PU (E4500) HMX73 None B
36. PU (EL500) HMX65 K59 10 B
37. PU (E4500) RDX65 Ammon. Phosphate 10 B
38, Derakane 510N TATBT3 None 312 327 B*
39, Derakane 8084 HMX73 None 239 280
Lo, " " RDX73 None . 208 230 B
. L1, " " TATB73 None . 312 335 B*
L2, Kraton & Arco  RDX65 Ammon. Phosphate 10 185 230
L3, PB & cils RDXT7T Amm. Phos, +K50 15 173 232 B
Ly, " " RDX82 " " o - - -
L5, Paraffin wax RDX91 None 20L 238 B
46, PolyurethaneFcam RDX50 Dow FRE651P 10 190 229 B
b7, " " RDX50 XFS 43357.00 10 20k 223 B
L8, PB & PE wax RDX90 K50 6 204 - 232 B
B = burns
B* = burns after several passes of the flame

no test done
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6.4 Cook Off Teet. Cook-Off Tesis were done to assess the resistance of
several compositions o catastrophic thermal decomposition. The test apparatus
is shown in Figure 2. The explosive blllets, 6.35 em D x 15.2cm L, were cast
into 1.27cm wall thickness steel cylinders and heated electrically until
éylinder failure. A thermocouple records the temperature at the explosive-wall

interface. When Comp B was heated in this completely filled apparatus at 1,28°
C/sec, the temperature at the explosive-wall interface jumped vhen it arrived

at 176° C after 137 seconds. The result wvas a violent reaction, but not con-
sidered a detonation.

A composition with 60% RDX, 14% scrylic rubber, and 26% Plaster of Paris
was heated in this sern: test. The temperature rose slovly until it reached

158.4°% C at 187 seconds. At this point it jumped and returned to the

bvaseline overall heating rate was 0.85° C/sec. The cylinder was recovered
intact although the bolts h~lding the end plates onto the cylinder failed. No
explosive was rec. ered. ‘''he plaster may have been sbsorbing more energy than
the Comp B during <uvne heatup. It decomposes endothermically in the vicinity

of 1500 C and releases water. The steam produced would pressurize the sealed
chamber leading to failure of the item. These mild results are much to be
preferred over detonations or violent reactions such as resulted with Comp B.

Another composition with 80 % RDX and 20 % brominated vinyl ester binder
was heated in this same test. In this case a violent reaction occurred at 197
C after 180 seconds giving an overall heating rate of 0.96° C/sec. The vinyl

ester composition heated up slower than Comp B wlth reaction occurring 21° C

righer in temperature. The degree of vioclence of reactlion was similar to that
of Comp B.

Anotrer compositior with 65% RDX, 10% ammonium phosphate, and a Kraton-
Arcoprime binder, was heated in this test, It was heated somevhat slower

(0.522° C/sez.) & very mild recction occurred after 381 seconds at 199° C.

T. PERFORMANCE TESTS

Several promising compositions were cast or pressed into steel cylinders .
for plate dent tests to measure relative performance. The cylinders have a
4,83 ¢m ID and 5.08 ¢cm L. The dent is made in a T.62 cm thick plate of RHA

steel. A booster of 5,08 cm D and 2.54 cm L Comp B was used to insure
initiation., The results are shown in Table 8.
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COOK-OFF BOMB CROSS SECTION

1

1
'
‘
o
[}
.

\
i
i
t
1
{

PHENOLIC SEAL -

STEEL END CAP _I_

10 HIGH STRENGTH BOLTS

1/2° —»

' OUTSIDE TC
l INSIDE TC
~

- - = e mm = —

I

| o r——

CONFINEMENT CYLINDER
4130 STEEL
2.8° ID/6° LONG
29.4 CU.IN. VOL

2.85¢ COMP B

s yor YeR WL W P L gl B R R Rl e -k M s A b m A — W e e e o e = o

' T~ HEATER
220VAC/2KW
4 C o
% {
‘;J/ PHENOLIC SEAL
EPOXY SEAL I
1
'\.-—,"-b ‘ ", sr
174°NPT PLUG [HS EEL END CAP
M—-‘—"—> Nt
‘H' «— TC LEADS

Figure 2. Cook-Off Test Apparatus.
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TABLE 8. Plate Dent Test Results

Round s Explosive RDX .
No. Composition Mass,g Density,g/cc Density.,g/cc RDX, g Dent,mn
1. TNT 1.600 (2u7) T.95
2. Comp B 1.T10 (157) 9.92
3. Inery Wax 0.78
b Mix# 6 48 0,778 0.389 24 2.2F
5. Mix# T 80 0.870 0.487 W2 3.86
: 6. Mix # 33 T2 1.100 0.883 58 4,03
7. Mix # 26 102 1.100 0.6%6 6 3.85
8. Mix # 29 128 1.390 0.377 81 6.13
9. Mix # 38 k7 1.590 1.161 107 6.30
10.  Mix # 34 139 1.500 1.125 104 ' 7.93
. 1. Mix # 30 L5 1.560 1.2u8 116 8.1k
12. Mix # 28 139 1,510 1.285 118 - 8,62
13. LX-1k 168 1.810 1.728 160 10.75
: a. Mix numbers refer to Tables 6 & 7.

b. Total energetic amounts, RDX, TNT, HMX, or TATB.

The dent depihs are seen to depend on the amounts of epergetic component
present in the cyiinder. Tne low values for explosive masses and densitles
for many of the mixes indicate the presence of voids snd/or porosity in many of
the finished ltems. The amounts of additives in the mixes are 10, 20, 1k, 1L,
14, 20(retardant binder), 0, 20 (retardant binder), and 9 wt.%, respectively.
These amounts secm to be effective to deter thermal ignition from Hot Wire

Tests, but also affect performence by recucing the amount of energetic material
ir the mixes,

A plot of dent depth vs total energetic amount is shown in Figure 3.
Slightly deficient performance can be seen for TNT and also somevhat for Comp
B, but this is reasonable when the relative energetic strenghths of RDX and TNT
are compared. :

8. CONCLUSIONS

The use of inhibitors in explosive compositions reduces their ignitability
by the Hot Wire Test and Cook Off Test. These materials should be safer in
combat-iduced thermal events. Performance, hovever, is somevwhat reduced since
the amount of energetic component has been reduced by substitution of addlitive
and the preparations were made using less than optimum conditions. Further
work is planned to improve processing equipment and procedures, to investigate
the mechanism by which the additives operate, and to continue Cook-0ff tests.
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